EE 364A (Convex Optimization): Lecture 5.1 - Log-Concave and Log-Convex Functions

Convex Optimization
Log-Concave
Log-Convex Functions
Author

Chao Ma

Published

December 12, 2025

Convex Optimization Textbook - Chapter 3.5 (page 118)

Log-Concave and Log-Convex functions

A positive function \(f\) is log-concave if \(\log f\) is concave:

\[ f(\theta x+(1-\theta)y)\ge f(x)^\theta f(y)^{1-\theta} \quad \text{for }0\le\theta\le 1 \]

\(f\) is log-convex if \(\log f\) is convex.

Proof

  1. To prove: \[ \log(f(\theta x+(1-\theta)y))\ge \theta \log f(x)+(1-\theta)\log f(y) \]

  2. Take exponential on both sides: \[ \begin{aligned} \exp(\log(f(\theta x+(1-\theta)y))) &\ge \exp(\theta \log f(x)+(1-\theta)\log f(y))\\ f(\theta x+(1-\theta)y) &\ge \exp(\theta \log f(x)) \cdot \exp((1-\theta)\log f(y))\\ &\ge f(x)^\theta \cdot f(y)^{1-\theta} \end{aligned} \]

  3. Final inequality: \[ f(\theta x+(1-\theta)y)\ge f(x)^\theta\cdot f(y)^{1-\theta} \]

Geometric interpretation of log-concavity

Examples

  • Powers: \(x^a\) on \(\mathbb{R}_{++}\) is log-convex for \(a \le 0\), log-concave for \(a \ge 0\)
    • \(f(x)=\log(x^a)=a\log(x)\)
    • \(f'(x)=a\cdot \frac{1}{x}\)
    • \(f''(x)=a\cdot -\frac{1}{x^2}\)
    Thus, the sign of \(a\) determines if \(\log(x^a)\) is convex or concave.
Function \(f(x)\) Domain Second Derivative / Curvature Convex / Concave \(\log f(x)\) Log-Convex / Log-Concave Key Notes
\(x^a\) \(\mathbb{R}_{++}\) \(a(a-1)x^{a-2}\) depends on \(a\) \(a\log x\) \(a\ge 0\): log-concave
\(a\le 0\): log-convex
Classic Boyd example
\(e^{ax}\) \(\mathbb{R}\) \(a^2 e^{ax}\) convex (all \(a\)) \(ax\) both Exponential is always convex
\(\log x\) \(\mathbb{R}_{++}\) \(-1/x^2\) concave \(\log\log x\) Fundamental concave function
Gaussian pdf \(\phi(x)\) \(\mathbb{R}\) \(-x^2/2 + c\) log-concave Core likelihood model
Gaussian CDF \(\Phi(x)\) \(\mathbb{R}\) \(-x\phi(x)\) ❌ (S-shaped) \(\log\Phi(x)\) log-concave Probit models
Logistic \(\sigma(x)\) \(\mathbb{R}\) changes sign concave log-concave Logistic regression
\(\\|x\\|_2\) \(\mathbb{R}^n\) convex All norms are convex
\(\log\sum_i e^{x_i}\) \(\mathbb{R}^n\) Hessian \(\succeq 0\) convex Softmax / log-partition
\(\prod_i x_i\) \(\mathbb{R}_{++}^n\) \(\sum_i \log x_i\) log-concave Geometric programming

Properties of log-concave functions

  • Twice differentiable function \(f\) with convex domain is log-concave iff \(f(x)\nabla^2f(x) \preceq \nabla f(x)\nabla f(x)^\top\) for all \(x \in \mathrm{dom}\, f\)
  • Product of log-concave functions is log-concave
  • Sum of log-concave functions is not always log-concave
  • If \(f : \mathbb{R}^n \to \mathbb{R}\) is log-concave, then \(g(x)=\int f(x,y) dy\) is log-concave

Properties of log-concave functions

Convexity with respect to generalized inequalities