Lecture 6: Singular Value Decomposition (SVD)

Linear Algebra
SVD
MIT 18.065
Author

Chao Ma

Published

December 29, 2025

SVD vs Eigenvalue Decomposition

The Singular Value Decomposition extends the eigenvalue decomposition to any matrix (not just square or symmetric matrices).

Comparing the two factorizations:

  • Eigenvalue decomposition (symmetric matrices): \(S=Q\Lambda Q^\top\)
    • Q: \(n \times n\) (orthogonal eigenvectors)
    • \(\Lambda\): \(n \times n\) (diagonal eigenvalues)
  • SVD (any matrix): \(A=U\Sigma V^\top\)
    • U: \(m \times m\) (left singular vectors)
    • \(\Sigma\): \(m \times n\) (nonnegative singular values on the diagonal, usually ordered \(\sigma_1 \ge \sigma_2 \ge \dots\))
    • \(V^\top\): \(n \times n\) (right singular vectors)

Key relationships (square case):

\[ A^\top A=V \Sigma^\top \Sigma V^\top,\quad AA^\top=U \Sigma \Sigma^\top U^\top \]


Building SVD from Eigenvectors

For a rectangular matrix A of rank r, the singular vectors satisfy:

\[ Av_r=\sigma_r u_r\\ Av_{r+1}=0 \]

Stacking these relationships for all r singular vectors:

\[ A[v_1,\dots,v_r]=[u_1\dots u_r]\begin{bmatrix}\sigma_1&&\\&\ddots&\\&&\sigma_r\end{bmatrix}\\ AV=U\Sigma\\ A=U\Sigma V^\top \]


Computing \(U\), \(\Sigma\), and \(V\)

Computing V (right singular vectors)

\[ A^\top A=V\Sigma^\top \Sigma V^\top \]

  • V: eigenvectors of \(A^\top A\)
  • \(\Sigma^2\): eigenvalues of \(A^\top A\)

Computing U (left singular vectors)

\[ AA^\top=U\Sigma V^\top V \Sigma ^\top U^\top=U \Sigma \Sigma^\top U^\top \]

  • U: eigenvectors of \(AA^\top\)
  • \(\Sigma^2\): eigenvalues of \(AA^\top\)

Orthogonality of U induced by V

The left singular vectors U are automatically orthogonal because V is orthogonal:

\[ u_1=\frac{Av_1}{\sigma_1},\quad u_r=\frac{Av_r}{\sigma_r}\\ u_1^\top u_r=\frac{v_1^\top A^\top A v_r}{\sigma_1 \sigma_r}=\frac{v_1^\top \sigma_r^2 v_r}{\sigma_1 \sigma_r}=\frac{\sigma_r v_1^\top v_r}{\sigma_1}=0 \]

Since \(v_1^\top v_r = 0\) (orthogonal eigenvectors), the left singular vectors are orthogonal.


Repeated Eigenvalues

When eigenvalues repeat, the eigenvectors span a subspace rather than being unique.

Example:

\[ \begin{bmatrix}1&0&0\\0&1&0\\0&0&5\end{bmatrix}\begin{bmatrix}x\\y\\0\end{bmatrix}=\begin{bmatrix}x\\y\\0\end{bmatrix} \]

For \(\lambda_1=\lambda_2=1\), the entire xy-plane is the eigenspace—any vector in that plane is an eigenvector.


Geometric Interpretation

SVD decomposes any linear transformation into three steps: rotate, scale, rotate.

\[ Ax=U \Sigma V^\top x \]

  1. \(x'=V^\top x\): Rotate x by \(V^\top\) (change of basis to V coordinates)
  2. \(x''=\Sigma x'\): Scale along each singular direction by \(\sigma_i\)
  3. \(Ax=Ux''\): Rotate result by U to final position

2D Example:

\[ A=\begin{bmatrix}1&2\\-2&1\end{bmatrix},\quad x=\begin{bmatrix}1\\1\end{bmatrix} \]

SVD geometric transformation

The transformation rotates, stretches by \(\sigma_1\) and \(\sigma_2\), then rotates again.


Singular Values, Determinants, and Eigenvalues

Since both U and V are orthogonal matrices with determinant ±1:

\[ \det A=\prod_{i=1}^r \sigma_i \]

For square matrices:

\[ \det A=\prod_{i=1}^r \sigma_i=\prod_{i=1}^n \lambda_i \]

Example:

\[ A=\begin{bmatrix}3&4\\0&5\end{bmatrix} \]

  • Singular values (sorted): \(\sigma_1\approx 6.708,\ \sigma_2\approx 2.236\)
  • Eigenvalues: \(\lambda_1=3,\ \lambda_2=5\)
  • Magnitudes of eigenvalues are bounded by the largest singular value: \(|\lambda_i|\le \sigma_1\); there is no ordering between individual \(\lambda_i\) and \(\sigma_i\) unless \(A\) is normal.
  • Product: \(\sigma_1 \sigma_2=|\det A|=15\), and \(\lambda_1\lambda_2=\det A=15\)

Special case: When A is symmetric, singular values equal absolute values of eigenvalues.


Polar Decomposition

Every matrix can be written as the product of a symmetric positive semidefinite matrix and an orthogonal matrix:

\[ A=SQ \]

By inserting \(U^\top U=I\):

\[ A=U\Sigma V^\top = (U\Sigma U^\top)( U V^\top) \]

  • \(UV^\top\) is orthogonal (product of orthogonal matrices)
  • \(U\Sigma U^\top\) is symmetric positive semidefinite

This is analogous to writing a complex number in polar form: \(z = r e^{i\theta}\) (magnitude × rotation).


Exercises

Exercise 1

Find \(\sigma\)’s, \(u\)’s and \(v\)’s in the SVD for \(A=\begin{bmatrix}3&4\\0&5\end{bmatrix}\).

Solution:

  1. Compute \(A^\top A\) and \(AA^\top\): \[ A^\top A=\begin{bmatrix}9&12\\12&41\end{bmatrix},\quad AA^\top=\begin{bmatrix}25&20\\20&25\end{bmatrix} \]

  2. Find singular values from eigenvalues of \(AA^\top\):

    • Trace: \(\sigma_1^2+\sigma_2^2=50\)
    • Determinant: \(\sigma_1^2 \cdot \sigma_2^2=125\)
    • Solving: \(\sigma_1=\sqrt{5}\), \(\sigma_2=\sqrt{45}\)
  3. Right singular vectors (eigenvectors of \(A^\top A\)):

    • \(A^\top A- 5I=\begin{bmatrix}4&12\\12&36\end{bmatrix}\) has nullspace \([-3,1]\)
      • Normalized: \(v_1=\frac{1}{\sqrt{10}}\begin{bmatrix}-3\\1\end{bmatrix}\)
    • \(A^\top A - 45I=\begin{bmatrix}-36&12\\12&-4\end{bmatrix}\) has nullspace \([1,3]\)
      • Normalized: \(v_2=\frac{1}{\sqrt{10}}\begin{bmatrix}1\\3\end{bmatrix}\)
  4. Left singular vectors (eigenvectors of \(AA^\top\)):

    • \(AA^\top - 5I=\begin{bmatrix}20&20\\20&20\end{bmatrix}\) has nullspace \([1,-1]\)
      • Normalized: \(u_1=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\)
    • \(AA^\top - 45I=\begin{bmatrix}-20&20\\20&-20\end{bmatrix}\) has nullspace \([1,1]\)
      • Normalized: \(u_2=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}\)

Exercise 2

A symmetric matrix \(S = S^\top\) has orthonormal eigenvectors \(v_1\) to \(v_n\). Then any vector x can be written as \(x = c_1v_1 + \cdots + c_nv_n\). Explain these two formulas:

(a) \(x^\top x=c_1^2+\dots+c_n^2\)

Solution:

\[ x^\top x=(c_1v_1)^\top c_1v_1+\dots+(c_nv_n)^\top c_n v_n=c_1^2v_1^\top v_1+\dots+c_n^2v_n^\top v_n \]

Because \(v_1,\dots, v_n\) are orthonormal, \(v_i^\top v_i=1\) for all i, so:

\[ x^\top x=c_1^2+\dots+c_n^2 \]

This is Parseval’s identity: the norm squared equals the sum of squared coefficients.

(b) \(x^\top S x=\lambda_1 c_1^2+\dots+\lambda_n c_n^2\)

Solution:

\[ Sx=S(c_1v_1+\dots+c_nv_n)=c_1Sv_1+\dots+c_nSv_n=c_1\lambda_1v_1+\dots+c_n\lambda_nv_n \]

\[ x^\top Sx=c_1^2\lambda_1 v_1^\top v_1+\dots+c_n^2\lambda_n v_n^\top v_n=\lambda_1c_1^2+\dots+\lambda_n c_n^2 \]

This shows the quadratic form \(x^\top Sx\) is a weighted sum of squared coefficients, weighted by eigenvalues. This connects to optimization: minimizing \(x^\top Sx\) favors directions with small eigenvalues.