MIT 18.06SC Lecture 10: Four Fundamental Subspaces

linear algebra
MIT 18.06
subspaces
rank
The four fundamental subspaces that completely characterize any matrix: column space, null space, row space, and left null space
Author

Chao Ma

Published

October 21, 2025

Overview

For any \(m \times n\) matrix \(A\), there are four fundamental subspaces that completely characterize its structure:

Subspace Notation Lives in Dimension Solves
Column Space \(C(A)\) \(\mathbb{R}^m\) \(r\) \(Ax = b\)
Null Space \(N(A)\) \(\mathbb{R}^n\) \(n - r\) \(Ax = \mathbf{0}\)
Row Space \(C(A^T)\) \(\mathbb{R}^n\) \(r\) \(A^T y = c\)
Left Null Space \(N(A^T)\) \(\mathbb{R}^m\) \(m - r\) \(A^T y = \mathbf{0}\)

where \(r = \text{rank}(A)\).

Column Space: \(C(A)\)

Definition: The span of all columns of \(A\).

Properties:

  • Lives in \(\mathbb{R}^m\) (same dimension as the rows)
  • Dimension = \(\text{rank}(A) = r\)
  • Represents all possible outputs of \(Ax\)

Linear combination interpretation:

\[ x_1 A_{:,1} + x_2 A_{:,2} + \cdots + x_n A_{:,n} = b \]

Key question: For which \(b\) does \(Ax = b\) have a solution?

Answer: When \(b \in C(A)\) (when \(b\) is in the column space).

Null Space: \(N(A)\)

Definition: All vectors \(x\) such that \(Ax = \mathbf{0}\).

Properties:

  • Lives in \(\mathbb{R}^n\) (same dimension as the columns)
  • Dimension = \(n - r\) (number of free variables)
  • Contains all solutions to the homogeneous system \(Ax = \mathbf{0}\)

Interpretation: Vectors that get “killed” by the matrix \(A\).

Row Space: \(C(A^T)\)

Definition: The span of all rows of \(A\), equivalently the column space of \(A^T\).

Properties:

  • Lives in \(\mathbb{R}^n\) (same dimension as the columns)
  • Dimension = \(\text{rank}(A) = r\) (same as column space)
  • Represents all possible outputs of \(A^T y\)
TipKey Insight

Row rank equals column rank (both equal \(r\)).

Left Null Space: \(N(A^T)\)

Definition: All vectors \(y\) such that \(A^T y = \mathbf{0}\).

Properties:

  • Lives in \(\mathbb{R}^m\) (same dimension as the rows)
  • Dimension = \(m - r\)
  • Also called the left null space of \(A\)

Why “left null space”?

Starting from \(A^T y = \mathbf{0}\):

\[ \begin{aligned} A^T y &= \mathbf{0} \\ (A^T y)^T &= \mathbf{0}^T = [\mathbf{0}] \\ y^T A &= [\mathbf{0}] \end{aligned} \]

Since \(y^T\) is \(1 \times m\) and appears on the left of \(A\), this is called the left null space.

RREF and the Four Subspaces

Example Matrix

\[ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 2 & 4 & 6 & 8 \end{bmatrix} \]

Row Echelon Form (REF)

\[ \text{REF} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Reduced Row Echelon Form (RREF)

Step 1: Normalize pivot rows

\[ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Step 2: Eliminate above pivots

\[ \text{RREF} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Analysis

  • Rank: \(r = 2\) (two pivot columns)
  • Free variables: \(n - r = 4 - 2 = 2\) (columns 3 and 4)
  • Dimension of \(N(A)\): \(n - r = 2\)
  • Dimension of \(C(A)\): \(r = 2\)
  • Dimension of \(C(A^T)\): \(r = 2\)
  • Dimension of \(N(A^T)\): \(m - r = 3 - 2 = 1\)
NoteKey Observation

RREF is the unique simplest form of a matrix obtained through row operations that preserve the solution space.

Visualization

Four Fundamental Subspaces

Dimension Relationships

For an \(m \times n\) matrix \(A\) with rank \(r\):

In \(\mathbb{R}^n\):

  • \(\dim(C(A^T)) + \dim(N(A)) = r + (n - r) = n\)
  • Row space and null space partition \(\mathbb{R}^n\)

In \(\mathbb{R}^m\):

  • \(\dim(C(A)) + \dim(N(A^T)) = r + (m - r) = m\)
  • Column space and left null space partition \(\mathbb{R}^m\)
ImportantKey Insight

The four subspaces come in complementary pairs that completely partition their ambient spaces.

Summary

The four fundamental subspaces:

  1. Column space \(C(A)\): where outputs \(Ax\) live
  2. Null space \(N(A)\): inputs that map to zero
  3. Row space \(C(A^T)\): perpendicular complement to null space in \(\mathbb{R}^n\)
  4. Left null space \(N(A^T)\): perpendicular complement to column space in \(\mathbb{R}^m\)

Dimension formula:

  • \(\dim(C(A)) = \dim(C(A^T)) = r\)
  • \(\dim(N(A)) = n - r\)
  • \(\dim(N(A^T)) = m - r\)

Total check: \(r + (n-r) = n\) and \(r + (m-r) = m\)


Source: MIT 18.06SC Linear Algebra, Lecture 10