MIT 18.06SC Lecture 10: Four Fundamental Subspaces
Overview
For any \(m \times n\) matrix \(A\), there are four fundamental subspaces that completely characterize its structure:
| Subspace | Notation | Lives in | Dimension | Solves |
|---|---|---|---|---|
| Column Space | \(C(A)\) | \(\mathbb{R}^m\) | \(r\) | \(Ax = b\) |
| Null Space | \(N(A)\) | \(\mathbb{R}^n\) | \(n - r\) | \(Ax = \mathbf{0}\) |
| Row Space | \(C(A^T)\) | \(\mathbb{R}^n\) | \(r\) | \(A^T y = c\) |
| Left Null Space | \(N(A^T)\) | \(\mathbb{R}^m\) | \(m - r\) | \(A^T y = \mathbf{0}\) |
where \(r = \text{rank}(A)\).
Column Space: \(C(A)\)
Definition: The span of all columns of \(A\).
Properties:
- Lives in \(\mathbb{R}^m\) (same dimension as the rows)
- Dimension = \(\text{rank}(A) = r\)
- Represents all possible outputs of \(Ax\)
Linear combination interpretation:
\[ x_1 A_{:,1} + x_2 A_{:,2} + \cdots + x_n A_{:,n} = b \]
Key question: For which \(b\) does \(Ax = b\) have a solution?
Answer: When \(b \in C(A)\) (when \(b\) is in the column space).
Null Space: \(N(A)\)
Definition: All vectors \(x\) such that \(Ax = \mathbf{0}\).
Properties:
- Lives in \(\mathbb{R}^n\) (same dimension as the columns)
- Dimension = \(n - r\) (number of free variables)
- Contains all solutions to the homogeneous system \(Ax = \mathbf{0}\)
Interpretation: Vectors that get “killed” by the matrix \(A\).
Row Space: \(C(A^T)\)
Definition: The span of all rows of \(A\), equivalently the column space of \(A^T\).
Properties:
- Lives in \(\mathbb{R}^n\) (same dimension as the columns)
- Dimension = \(\text{rank}(A) = r\) (same as column space)
- Represents all possible outputs of \(A^T y\)
Row rank equals column rank (both equal \(r\)).
Left Null Space: \(N(A^T)\)
Definition: All vectors \(y\) such that \(A^T y = \mathbf{0}\).
Properties:
- Lives in \(\mathbb{R}^m\) (same dimension as the rows)
- Dimension = \(m - r\)
- Also called the left null space of \(A\)
Why “left null space”?
Starting from \(A^T y = \mathbf{0}\):
\[ \begin{aligned} A^T y &= \mathbf{0} \\ (A^T y)^T &= \mathbf{0}^T = [\mathbf{0}] \\ y^T A &= [\mathbf{0}] \end{aligned} \]
Since \(y^T\) is \(1 \times m\) and appears on the left of \(A\), this is called the left null space.
RREF and the Four Subspaces
Example Matrix
\[ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 2 & 4 & 6 & 8 \end{bmatrix} \]
Row Echelon Form (REF)
\[ \text{REF} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
Reduced Row Echelon Form (RREF)
Step 1: Normalize pivot rows
\[ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
Step 2: Eliminate above pivots
\[ \text{RREF} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
Analysis
- Rank: \(r = 2\) (two pivot columns)
- Free variables: \(n - r = 4 - 2 = 2\) (columns 3 and 4)
- Dimension of \(N(A)\): \(n - r = 2\)
- Dimension of \(C(A)\): \(r = 2\)
- Dimension of \(C(A^T)\): \(r = 2\)
- Dimension of \(N(A^T)\): \(m - r = 3 - 2 = 1\)
RREF is the unique simplest form of a matrix obtained through row operations that preserve the solution space.
Visualization

Dimension Relationships
For an \(m \times n\) matrix \(A\) with rank \(r\):
In \(\mathbb{R}^n\):
- \(\dim(C(A^T)) + \dim(N(A)) = r + (n - r) = n\)
- Row space and null space partition \(\mathbb{R}^n\)
In \(\mathbb{R}^m\):
- \(\dim(C(A)) + \dim(N(A^T)) = r + (m - r) = m\)
- Column space and left null space partition \(\mathbb{R}^m\)
The four subspaces come in complementary pairs that completely partition their ambient spaces.
Summary
The four fundamental subspaces:
- Column space \(C(A)\): where outputs \(Ax\) live
- Null space \(N(A)\): inputs that map to zero
- Row space \(C(A^T)\): perpendicular complement to null space in \(\mathbb{R}^n\)
- Left null space \(N(A^T)\): perpendicular complement to column space in \(\mathbb{R}^m\)
Dimension formula:
- \(\dim(C(A)) = \dim(C(A^T)) = r\)
- \(\dim(N(A)) = n - r\)
- \(\dim(N(A^T)) = m - r\)
Total check: \(r + (n-r) = n\) and \(r + (m-r) = m\)
Source: MIT 18.06SC Linear Algebra, Lecture 10