Lecture 13: Quiz 1 Review
1. Dimension of Subspaces
Problem: Suppose \(u, v, w\) are non-zero vectors in \(\mathbb{R}^7\). They span a subspace of \(\mathbb{R}^7\). What are the possible dimensions?
Answer: 1, 2, or 3
Explanation:
- Minimum dimension: 1 (if all vectors are scalar multiples of each other)
- Maximum dimension: 3 (if all three vectors are linearly independent)
- Middle case: 2 (if exactly two are independent)
- Cannot be 0 (all vectors are non-zero)
- Cannot exceed 3 (only three vectors available)
2. Null Space Dimensions
Problem: We have \(A\), a \(5 \times 3\) matrix with rank \(r = 3\). What is the null space?
Answer: \(N(A) = \{\mathbf{0}\}\) (just the zero vector)
Calculation:
\[ \dim(N(A)) = n - r = 3 - 3 = 0 \]
Interpretation: Since the rank equals the number of columns, all columns are independent. The only solution to \(Ax = \mathbf{0}\) is \(x = \mathbf{0}\).
3. Echelon Forms with Block Matrices
Problem 3a: Matrix B
Given:
\[ B = \begin{bmatrix} u \\ 2u \end{bmatrix} \]
where \(u\) is a row vector.
Echelon form:
\[ \begin{bmatrix} u \\ \mathbf{0} \end{bmatrix} \]
Explanation: Row 2 is a multiple of row 1, so elimination makes row 2 become zero.
Problem 3b: Matrix C
Given:
\[ C = \begin{bmatrix} u & u \\ u & 0 \end{bmatrix} \]
where \(u\) is a \(5 \times 3\) matrix with rank 3.
Elimination steps:
\[ \begin{bmatrix} u & u \\ u & 0 \end{bmatrix} \rightarrow \begin{bmatrix} u & u \\ 0 & -u \end{bmatrix} \rightarrow \begin{bmatrix} u & 0 \\ 0 & -u \end{bmatrix} \rightarrow \begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix} \]
Step-by-step:
- Subtract row 1 from row 2: eliminates bottom-left block
- Subtract column 1 from column 2: eliminates top-right block
- Multiply row 2 by -1: normalize
Rank of C:
- \(u\) is \(5 \times 3\) with rank 3
- \(C\) is \(10 \times 6\) (two \(5 \times 3\) blocks side by side)
- Both \(u\) blocks contribute full rank
- Rank of C = 6
Dimension of left null space:
\[ \dim(N(C^T)) = m - r = 10 - 6 = 4 \]
4. Complete Solution to Linear Systems
Problem: Given
\[ Ax = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}, \quad x = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + c\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]
Part a: Dimension of Row Space
Answer: 1
Reasoning:
- The null space has dimension 2 (two free variables: \(c\) and \(d\))
- \(\dim(N(A)) = n - r = 2\)
- Since \(n = 3\) (three columns), \(r = 3 - 2 = 1\)
- Row space dimension = rank = 1
Part b: Find Matrix A
Strategy: Use the particular solution and null space vectors.
Column 1:
\[ A\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \implies \text{Column 1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \]
Column 3:
\[ A\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0} \implies \text{Column 3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
Column 2:
\[ A\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \mathbf{0} \implies \text{Column 1} + \text{Column 2} = \mathbf{0} \]
Therefore, Column 2 = \(-\)Column 1:
\[ \text{Column 2} = \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} \]
Matrix A:
\[ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix} \]
Part c: Which b Can Be Solved?
Answer: \(b\) must be a multiple of \(\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\)
Reasoning:
- Column space of \(A\) is spanned by \(\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\)
- All columns are multiples of this vector
- \(Ax = b\) has a solution only if \(b \in C(A)\)
Therefore: \(b = c\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\) for some scalar \(c\).
5. Properties of Null Spaces
Problem: If the null space is \(\{\mathbf{0}\}\) and \(A\) is square, what is the null space of \(A^T\)?
Answer: \(N(A^T) = \{\mathbf{0}\}\)
Proof:
- \(A\) is \(n \times n\) (square)
- \(N(A) = \{\mathbf{0}\}\) means \(\dim(N(A)) = 0\)
- Therefore: \(\text{rank}(A) = n - 0 = n\)
- Since \(A\) is square with full rank, \(A\) is invertible
- For \(A^T\): \(\dim(N(A^T)) = m - r = n - n = 0\)
6. Subspaces of Matrix Spaces
Problem: Consider the space of all \(5 \times 5\) matrices (dimension 25). Do the invertible \(5 \times 5\) matrices form a subspace?
Answer: No
Reason: Not closed under addition.
Counterexample:
\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \]
Both \(A\) and \(B\) are invertible, but:
\[ A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
is not invertible.
7. Nilpotent Matrices
Problem: If \(B^2 = 0\), must \(B = \mathbf{0}\)?
Answer: False
Counterexample:
\[ B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \]
Verification:
\[ B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]
Explanation: Rows times columns can all be zero even when the matrix itself is non-zero.
8. Solvability of Square Systems
Problem: If an \(n \times n\) matrix has rank \(n\), does \(Ax = b\) always have a solution?
Answer: Yes
Proof:
- Rank \(n\) for an \(n \times n\) matrix means \(A\) is invertible
- Therefore: \(x = A^{-1}b\) always exists
- Every \(b \in \mathbb{R}^n\) is in the column space
9. Null Space from Matrix Factorization
Problem: Given
\[ B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
Without multiplication, find the basis for \(N(B)\).
Analysis
Dimensions:
- Left matrix: \(3 \times 3\), full rank (invertible)
- Right matrix: \(3 \times 4\), rank 2
- \(B\): \(3 \times 4\)
Key insight: \(\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))\)
Therefore: \(\operatorname{rank}(B) = 2\)
Null space dimension:
\[ \dim(N(B)) = n - r = 4 - 2 = 2 \]
Finding basis: Since the left matrix is invertible, \(N(B) = N(\text{right matrix})\)
From the right matrix in RREF:
- Pivot columns: 1, 2
- Free variables: columns 3, 4
Basis for N(B):
\[ c_1\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]
Verification:
- Column 3 = \(1 \cdot\)Column 1 + \((-1) \cdot\)Column 2
- Column 4 = \((-2) \cdot\)Column 1 + \(1 \cdot\)Column 2
Solving Bx = b
Problem: Solve \(Bx = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\)
Analysis:
\[ B_{\text{col1}} = [1, 0, 1]^T \\ B_{\text{col2}} = [1, 1, 0]^T \\ B_{\text{col3}} = [0, 1, -1]^T \\ B_{\text{col4}} = [1, -1, 2]^T \]
Particular solution: \(x_p = \begin{bmatrix}1 \\ 0 \\ 0 \\ 0\end{bmatrix}\)
Complete solution:
\[ x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_1\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]
10. Conceptual Questions
Question 2: If m = n, Are Row Space and Column Space the Same?
Answer: No, not in general
When true: Only when \(A\) is symmetric (\(A = A^T\))
Counterexample:
\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \]
- Column space: span of \(\begin{bmatrix}1 \\ 0\end{bmatrix}\)
- Row space: span of \(\begin{bmatrix}1 \\ 0\end{bmatrix}\)
(In this case they happen to be the same, but that’s coincidental)
Better counterexample:
\[ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \]
- Column space: \(\{c\begin{bmatrix}1 \\ 0\end{bmatrix}\}\) (in \(\mathbb{R}^2\))
- Row space: \(\{c\begin{bmatrix}1 \\ 1\end{bmatrix}\}\) (in \(\mathbb{R}^2\))
Different vectors!
Question 3: If A and B Have the Same Four Subspaces, Is A a Multiple of B?
Answer: No
Counterexample: If \(A\) and \(B\) are both full rank \(n \times n\) matrices:
- They both have column space = \(\mathbb{R}^n\)
- They both have null space = \(\{\mathbf{0}\}\)
- They both have row space = \(\mathbb{R}^n\)
- They both have left null space = \(\{\mathbf{0}\}\)
But \(A\) and \(B\) can be completely different matrices (e.g., different invertible matrices).
Question 4: If I Change Two Rows of A, Which Subspaces Stay the Same?
Answer:
- \(N(A)\) (null space)
- \(C(A^T)\) (row space)
Explanation:
- Row operations preserve the null space
- Row operations preserve the row space (just produce different linear combinations)
- Column space and left null space will generally change
Question 5: Can Vector [1, 2, 3] Be in Both Null Space and Row Space?
Answer: No (assuming non-zero matrix)
Reason:
- If \(v\) is in the null space: \(Av = \mathbf{0}\)
- If \(v\) is also a row of \(A\): then \(Av\) includes the dot product \(v \cdot v = \|v\|^2 > 0\)
- This is a contradiction
Key insight: Null space and row space are orthogonal complements in \(\mathbb{R}^n\).
Source: MIT 18.06SC Linear Algebra, Lecture 13