Lecture 13: Quiz 1 Review

Author

Chao Ma

Published

October 26, 2025


1. Dimension of Subspaces

Problem: Suppose \(u, v, w\) are non-zero vectors in \(\mathbb{R}^7\). They span a subspace of \(\mathbb{R}^7\). What are the possible dimensions?

Answer: 1, 2, or 3

Explanation:

  • Minimum dimension: 1 (if all vectors are scalar multiples of each other)
  • Maximum dimension: 3 (if all three vectors are linearly independent)
  • Middle case: 2 (if exactly two are independent)
  • Cannot be 0 (all vectors are non-zero)
  • Cannot exceed 3 (only three vectors available)

2. Null Space Dimensions

Problem: We have \(A\), a \(5 \times 3\) matrix with rank \(r = 3\). What is the null space?

Answer: \(N(A) = \{\mathbf{0}\}\) (just the zero vector)

Calculation:

\[ \dim(N(A)) = n - r = 3 - 3 = 0 \]

Interpretation: Since the rank equals the number of columns, all columns are independent. The only solution to \(Ax = \mathbf{0}\) is \(x = \mathbf{0}\).


3. Echelon Forms with Block Matrices

Problem 3a: Matrix B

Given:

\[ B = \begin{bmatrix} u \\ 2u \end{bmatrix} \]

where \(u\) is a row vector.

Echelon form:

\[ \begin{bmatrix} u \\ \mathbf{0} \end{bmatrix} \]

Explanation: Row 2 is a multiple of row 1, so elimination makes row 2 become zero.


Problem 3b: Matrix C

Given:

\[ C = \begin{bmatrix} u & u \\ u & 0 \end{bmatrix} \]

where \(u\) is a \(5 \times 3\) matrix with rank 3.

Elimination steps:

\[ \begin{bmatrix} u & u \\ u & 0 \end{bmatrix} \rightarrow \begin{bmatrix} u & u \\ 0 & -u \end{bmatrix} \rightarrow \begin{bmatrix} u & 0 \\ 0 & -u \end{bmatrix} \rightarrow \begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix} \]

Step-by-step:

  1. Subtract row 1 from row 2: eliminates bottom-left block
  2. Subtract column 1 from column 2: eliminates top-right block
  3. Multiply row 2 by -1: normalize

Rank of C:

  • \(u\) is \(5 \times 3\) with rank 3
  • \(C\) is \(10 \times 6\) (two \(5 \times 3\) blocks side by side)
  • Both \(u\) blocks contribute full rank
  • Rank of C = 6

Dimension of left null space:

\[ \dim(N(C^T)) = m - r = 10 - 6 = 4 \]


4. Complete Solution to Linear Systems

Problem: Given

\[ Ax = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}, \quad x = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + c\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]

Part a: Dimension of Row Space

Answer: 1

Reasoning:

  • The null space has dimension 2 (two free variables: \(c\) and \(d\))
  • \(\dim(N(A)) = n - r = 2\)
  • Since \(n = 3\) (three columns), \(r = 3 - 2 = 1\)
  • Row space dimension = rank = 1

Part b: Find Matrix A

Strategy: Use the particular solution and null space vectors.

Column 1:

\[ A\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \implies \text{Column 1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \]

Column 3:

\[ A\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0} \implies \text{Column 3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

Column 2:

\[ A\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \mathbf{0} \implies \text{Column 1} + \text{Column 2} = \mathbf{0} \]

Therefore, Column 2 = \(-\)Column 1:

\[ \text{Column 2} = \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} \]

Matrix A:

\[ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix} \]


Part c: Which b Can Be Solved?

Answer: \(b\) must be a multiple of \(\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\)

Reasoning:

  • Column space of \(A\) is spanned by \(\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\)
  • All columns are multiples of this vector
  • \(Ax = b\) has a solution only if \(b \in C(A)\)

Therefore: \(b = c\begin{bmatrix}1 \\ 2 \\ 1\end{bmatrix}\) for some scalar \(c\).


5. Properties of Null Spaces

Problem: If the null space is \(\{\mathbf{0}\}\) and \(A\) is square, what is the null space of \(A^T\)?

Answer: \(N(A^T) = \{\mathbf{0}\}\)

Proof:

  • \(A\) is \(n \times n\) (square)
  • \(N(A) = \{\mathbf{0}\}\) means \(\dim(N(A)) = 0\)
  • Therefore: \(\text{rank}(A) = n - 0 = n\)
  • Since \(A\) is square with full rank, \(A\) is invertible
  • For \(A^T\): \(\dim(N(A^T)) = m - r = n - n = 0\)

6. Subspaces of Matrix Spaces

Problem: Consider the space of all \(5 \times 5\) matrices (dimension 25). Do the invertible \(5 \times 5\) matrices form a subspace?

Answer: No

Reason: Not closed under addition.

Counterexample:

\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \]

Both \(A\) and \(B\) are invertible, but:

\[ A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

is not invertible.


7. Nilpotent Matrices

Problem: If \(B^2 = 0\), must \(B = \mathbf{0}\)?

Answer: False

Counterexample:

\[ B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \]

Verification:

\[ B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

Explanation: Rows times columns can all be zero even when the matrix itself is non-zero.


8. Solvability of Square Systems

Problem: If an \(n \times n\) matrix has rank \(n\), does \(Ax = b\) always have a solution?

Answer: Yes

Proof:

  • Rank \(n\) for an \(n \times n\) matrix means \(A\) is invertible
  • Therefore: \(x = A^{-1}b\) always exists
  • Every \(b \in \mathbb{R}^n\) is in the column space

9. Null Space from Matrix Factorization

Problem: Given

\[ B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Without multiplication, find the basis for \(N(B)\).

Analysis

Dimensions:

  • Left matrix: \(3 \times 3\), full rank (invertible)
  • Right matrix: \(3 \times 4\), rank 2
  • \(B\): \(3 \times 4\)

Key insight: \(\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))\)

Therefore: \(\operatorname{rank}(B) = 2\)

Null space dimension:

\[ \dim(N(B)) = n - r = 4 - 2 = 2 \]

Finding basis: Since the left matrix is invertible, \(N(B) = N(\text{right matrix})\)

From the right matrix in RREF:

  • Pivot columns: 1, 2
  • Free variables: columns 3, 4

Basis for N(B):

\[ c_1\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]

Verification:

  • Column 3 = \(1 \cdot\)Column 1 + \((-1) \cdot\)Column 2
  • Column 4 = \((-2) \cdot\)Column 1 + \(1 \cdot\)Column 2

Solving Bx = b

Problem: Solve \(Bx = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\)

Analysis:

\[ B_{\text{col1}} = [1, 0, 1]^T \\ B_{\text{col2}} = [1, 1, 0]^T \\ B_{\text{col3}} = [0, 1, -1]^T \\ B_{\text{col4}} = [1, -1, 2]^T \]

Particular solution: \(x_p = \begin{bmatrix}1 \\ 0 \\ 0 \\ 0\end{bmatrix}\)

Complete solution:

\[ x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_1\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]


10. Conceptual Questions

Question 1: Do A and -A Share the Same Four Fundamental Subspaces?

Answer: Yes

Proof:

  • \(C(A) = C(-A)\) (columns are just scaled by -1)
  • \(N(A) = N(-A)\) (if \(Ax = \mathbf{0}\), then \((-A)x = \mathbf{0}\))
  • \(C(A^T) = C((-A)^T)\) (row space argument)
  • \(N(A^T) = N((-A)^T)\) (left null space argument)

Question 2: If m = n, Are Row Space and Column Space the Same?

Answer: No, not in general

When true: Only when \(A\) is symmetric (\(A = A^T\))

Counterexample:

\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \]

  • Column space: span of \(\begin{bmatrix}1 \\ 0\end{bmatrix}\)
  • Row space: span of \(\begin{bmatrix}1 \\ 0\end{bmatrix}\)

(In this case they happen to be the same, but that’s coincidental)

Better counterexample:

\[ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \]

  • Column space: \(\{c\begin{bmatrix}1 \\ 0\end{bmatrix}\}\) (in \(\mathbb{R}^2\))
  • Row space: \(\{c\begin{bmatrix}1 \\ 1\end{bmatrix}\}\) (in \(\mathbb{R}^2\))

Different vectors!


Question 3: If A and B Have the Same Four Subspaces, Is A a Multiple of B?

Answer: No

Counterexample: If \(A\) and \(B\) are both full rank \(n \times n\) matrices:

  • They both have column space = \(\mathbb{R}^n\)
  • They both have null space = \(\{\mathbf{0}\}\)
  • They both have row space = \(\mathbb{R}^n\)
  • They both have left null space = \(\{\mathbf{0}\}\)

But \(A\) and \(B\) can be completely different matrices (e.g., different invertible matrices).


Question 4: If I Change Two Rows of A, Which Subspaces Stay the Same?

Answer:

  • \(N(A)\) (null space)
  • \(C(A^T)\) (row space)

Explanation:

  • Row operations preserve the null space
  • Row operations preserve the row space (just produce different linear combinations)
  • Column space and left null space will generally change

Question 5: Can Vector [1, 2, 3] Be in Both Null Space and Row Space?

Answer: No (assuming non-zero matrix)

Reason:

  • If \(v\) is in the null space: \(Av = \mathbf{0}\)
  • If \(v\) is also a row of \(A\): then \(Av\) includes the dot product \(v \cdot v = \|v\|^2 > 0\)
  • This is a contradiction

Key insight: Null space and row space are orthogonal complements in \(\mathbb{R}^n\).


Source: MIT 18.06SC Linear Algebra, Lecture 13