MIT 18.065: Lecture 15 - Matrix Derivatives and Eigenvalue Changes

Linear Algebra
Matrix Derivatives
Eigenvalues
Author

Chao Ma

Published

January 19, 2026

Matrix Derivatives and Eigenvalue Changes

This lecture studies how matrices and their spectral quantities change with time. We derive formulas for the derivative of a matrix inverse, the derivative of an eigenvalue, and the effect of low-rank updates.

Derivative of the matrix inverse

Let \(A(t)\) be invertible for all \(t\). Differentiate the identity \[ A^{-1}(t)A(t)=I \] to get \[ \frac{dA^{-1}}{dt}A + A^{-1}\frac{dA}{dt}=0. \] Multiplying on the right by \(A^{-1}\) gives the standard formula \[ \frac{dA^{-1}}{dt}=-A^{-1}\frac{dA}{dt}A^{-1}. \]

Derivative of an eigenvalue

Suppose \[ A(t)x(t)=\lambda(t)x(t), \] with left eigenvector \(y(t)\) defined by \[ y(t)^\top A(t)=\lambda(t)y(t)^\top. \] Normalize so that \(y^\top x=1\). Then \[ \lambda(t)=y(t)^\top A(t)x(t). \] Differentiating gives \[ \frac{d\lambda}{dt}=\frac{dy^\top}{dt}A x + y^\top\frac{dA}{dt}x + y^\top A\frac{dx}{dt}. \] Using \(Ax=\lambda x\), \(y^\top A=\lambda y^\top\), and the normalization \(\frac{d}{dt}(y^\top x)=0\), the first and third terms cancel. Therefore \[ \frac{d\lambda}{dt}=y^\top\frac{dA}{dt}x. \] For symmetric \(A(t)\), we can take \(y=x\), so \(\dot\lambda = x^\top \dot A\,x\).

Eigenvalue derivative setup

Eigenvalue changes under low-rank updates

Let \(S\in\mathbb{R}^{n\times n}\) be symmetric with eigenvalues \[ \lambda_1\ge \lambda_2\ge \cdots\ge \lambda_n. \] Consider a positive semidefinite update \(S\mapsto S+UU^\top\) of rank \(k\) and denote the updated eigenvalues by \[ \gamma_1\ge \gamma_2\ge \cdots\ge \gamma_n. \]

Rank-1 update (interlacing)

For \(S+uu^\top\) (rank-1, PSD), all eigenvalues increase: \(\gamma_i\ge \lambda_i\). In addition, the spectra interlace: \[ \gamma_1\ge \lambda_1\ge \gamma_2\ge \lambda_2\ge \cdots\ge \gamma_n\ge \lambda_n. \] Equivalently, for \(i\ge 2\), \[ \lambda_i\le \gamma_i\le \lambda_{i-1}. \]

Rank-2 update (wider interlacing)

For \(S+UU^\top\) with \(\mathrm{rank}(U)=2\), eigenvalues can move up by at most two positions in the ordering. For \(i\ge 3\), \[ \lambda_i\le \gamma_i\le \lambda_{i-2}. \] The top two eigenvalues have no comparable upper bound beyond monotonicity.

Rank-\(k\) update (general case)

In general, a rank-\(k\) PSD update yields the interlacing bound \[ \lambda_i\le \gamma_i\le \lambda_{i-k},\quad i\ge k+1, \] with the convention that \(\lambda_j=+\infty\) for \(j\le 0\). This captures the idea that a rank-\(k\) update can shift any eigenvalue upward by at most \(k\) positions.